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* Feature Matching

* Pipeline

bust Feature Matchi d Fast GMS Solutio




Feature Matching Introduction
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e Applications
‘ Correct Correspondences ‘
‘ Geometry between 2 views ‘ ‘ Similarity(Number of matches) ‘
Estimate Camera Pose Image retrieval
Localization (SFM) Object Recognition
Tracking (SLAM) Loop Closing (SLAM)
Re-localization (SLAM)
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Sparse Feature Matching
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* Feature detector & descriptor

Faster Better

SURF, PCA-SIFT,
ORB, ASIFT,
AKAZE, LIFT,
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Feature Matching Introduction
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* Matching

Matching

‘ Nearest-Neighbor ‘ ‘ Optimization Others

T

‘ Brute-Force ‘ ‘ Approximate(FLANN) ‘

‘ Matching Algorithms ‘ ‘ Graph Matching

CODE, RepMatch@
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Feature Matching Introduction
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 RANSAC-based Geometry Estimation (or Verification)
* An example for RANSAC framework (fitting a line)

A data set with many outliers for which a line has to Fitted line with RANSAC; outliers have no influence
be fitted. on the result.
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Feature Matching Introduction
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 RANSAC-based Geometry Estimation (or Verification)

* Fundamental Matrix (for 3D scenes)
* Point to Line (weak, general)

« Homography (for 2D scenes)
* Point to Point (strong, narrow range)
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Recent Robust Matchers
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Recent Robust Matchers
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 CODEJ[1]
* For wide-baseline matching.

* RepMatch|[2]
* Based on CODE[1].
* Solve the repeated structure problem.

[4  [1] CODE: Coherence Based Decision Boundaries for Feature Correspondence, IEEE TPAMI,2016, Lin et. al.
4 [2] RepMatch: Robust Feature Matching and Pose for Reconstructing Modern Cities, ECCV, 2016,, Lin et. al.
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Recent Robust Matchers (CODE)

* Wide-baseline matching
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CODE feature correspondence with the same A-SIFT features
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Recent Robust Matchers (CODE)

e |dea
Selected matches All matches
(t=0.86) (t=1.0)
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Recent Robust Matchers (CODE)
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e Regression models

Fig. 2: Regression can be understood as finding a continuous
surface that explains scattered data points (denoted by “+”).

* Likelihood Regression
* Affine motion regression -> x
* Affine motion regression ->vy
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Recent Robust Matchers (CODE) =C

* Likelihood Regression

* Train Data
» Selected distinctive correspondences(after ratio-test).

* Test Data

* All feature correspondences.
Features of a correspondence

* X, = |x,y,dx,dy, T, T,, T3, T,].

* Tis a transformation matrix of [s1, r1] to [s2, r2].

* s means scale, r represents rotation.

Labels

e 1 for all correspondences
Cost function

* Huber function

Non-linear Optimization
e Construct Gaussian Similar Matrix
e X(Matrix with n x n elements), Y(Matrix with nx1 elements(1) )
* nisthe number of train data
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Recent Robust Matchers (CODE) =C

e Affine motion regression

* Train Data

* The inliers of train data in the likelihood model
Test Data

* Correspondences filtered by the likelihood model

Feature Space
 Same as the likelihood model

Label

* X2, and y2.(x,y represents pixel position, 2 means the second image)

Cost function
* Huber function

Non-linear Optimization
e Same as before(Gaussian Similar Matrix).
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Recent Robust Matchers (CODE) =1

* Insight (likelihood model)

Coherent motion Incoherent motion

B |

% —_— — : A -~ i — :
% 1T T i

@) b) o @

Fig. 3: Coherence based separation of true and false matches.
Motions are considered coherent if (a) many local points
make similar motions or (b) there is broad spatial support
for the motion. This is enforced via the likelihood function
in Eqn. (21). In contrast, feature matches in (¢) and (d) do
not give coherent motions, as the matches are not consistent
in (c), while there are insufficient smoothly moving points
to justity a long-range motion coherence model in (d).
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Recent Robust Matchers (CODE) 5%

* Matching samples

Image pair

A-SIFT
w/o CODE

CODE
mput

A-SIFT
w/ CODE

Alterantive
display
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Recent Robust Matchers (CODE)

e Structure from Motion
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A set of multi-view images [43] Agisoft [48]: A commercial 3D reconstruction software

Visual SfM [3], [44], [45], [46], [47] Visual SfM using feature matches returned by A-SIFT w CODE

[ C. Wu, “VisualSfM: A visual structure from motion system,” 2011[Online]. Available: http://ccwu.me/vsfm/
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Recent Robust Matchers (CODE)

* Run time comparison

— Bounded distortion Mode seeking— CODE (Ours)
600 l l l l l

NN

o

o
|

Time in Seconds
N
o
o
|

0 0.5 1 1.5 2 2.5 3
Number of Matches " 104
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Recent Robust Matchers (RepMatch) =
 RepMatch

o -—

(a) Visual SIM »(b) Visual SfM with our matches  (c) Dense reconstruction
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Recent Robust Matchers (RepMatch)

* Repetitive Structure

(a) All matches (b) Epipolar (¢) BF (d) RepMatch

Imgl

[llustration on real images. Black dots in (a) & (b) indicate wrong matches.
Note: Common central tower belong to physically different parts of the building.
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Recent Robust Matchers (RepMatch)
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e |dea
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Recent Robust Matchers (RepMatch)
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e Structure from Motion
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(b) Visual STM with BF matches (c) Visual StM with RepMatch

(1) Indoor scene
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Recent Robust Matchers (RepMatch)

P

(b) Visual SfM with BF matches (c¢) Visual SfM with RepMatch
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Recent Robust Matchers (RepMatch)
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e Structure from Motion

Input

Waiﬁﬁga ;iiqg TR = R s
(a) Visual StM
(b) Visual STM with BF matches (c¢) Visual SftM with RepMatch

(11) City street scene
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Recent Robust Matchers (RepMatch)
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e Structure from Motion

(111) Building scene
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Fast and Robust GMS Solution
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Motivation: Trade-off of quality and speed %

* Trade-off
Matching
‘ Nearest-Neighbor ‘ ‘ Optimization ‘
Ratio test ‘ Current Methods ‘ ‘ Graph Matching ‘

Popular, Fast,
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Methodology: Motion Smoothness TS
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* Observation

* True matches(green) are visually smooth while false
matches(cyan) are not.
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Methodology: Key idea
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* Inference

* According to the Bayesian rule, as true matches are smooth in
motion space, consistent matches are thus more likely to be
true.

* Key idea

* Find smooth matches from noisy data as our proposals.

* Method

Motion Statistics Grid Framework Motion Kernels
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Methodology: Motion Statistics
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* Motion Statistics Model

I

true match x;
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Methodology: Motion Statistics
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e Distribution

f B(n,p:), if x;is true

Sy ~ 4

B(n,p¢), if z;is false

\

* Let f, be one of the n supporting features in region a

* Let p,, pybe the probability that, feature fa's nearest
neighbor is in region b, given {a, b} view the same and
different location, respectively,
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Methodology: Motion Statistics

N
[E

|
=1

* Event

Event | Description

fa fa matches correctly, p(fi) =t
11 fa matches wrongly, p(ff) =1 —t

fa fa’s nearest-neighbor is a feature in region b

* Assumption

p(folfl) = Bm/M

Here, m is the number of features in region b and M is the number

of features in second image. [ is a factor added to accommodate
violations of assumption caused by repeated patterns.
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Methodology: Motion Statistics
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* Probability

pe =p(fL) + p(fDp(f21f])
=t + (1 —t)Bm/M

Explanation: If {a b}view the same location, event f,? occurs
when f& matches correctly or it matches wrongly but
coincidentally lands in region b.

py =p(fp(fiI1])
=B3(1 —t)(m/M)

Explanation: If {a b}view the different location, event
£2 oceurs only when f, matches wrongly and coincidentally
lands in region b.
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Methodology: Motion Statistics

N
[E

|
=1

* Multi-region Generalization

6/14/2017
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Methodology: Motion Statistics
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e Distribution

S B(Kn,p:), if z;is true
‘ B(Kn,pys), ifx;is false

* Mean & Variance

{my = Knpy, s¢ = \/Knt(l —pe)} if z; is true
{ms = Knps,s; = /Knps(1 —ps)} if z; is false

6/14/2017 Robust Feature Matching and Fast GMS Solution




=10
[E

Methodology: Motion Statistics

* Analysis
e Partionability

ms —my Knp: — Knpy

P = =
sttsr /Knp(1—pe) +/Enps(1—py)

* Quantity-Quality equivalence:

P x v Kn.

» Relationship to Descriptors:

limm; = Kn, limmy; —0, lim P — oo.
t—1 t—1 t—1
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Methodology: Motion Statistics
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* Experiments on real data:

Motion Statistics

14

=== |nlier
m— Qutlier | |

121

101

1 15 . 25 3 35 4 45 5
X: image orders (the higher the harder)

The model is evaluated on Oxford Affine Dataset. Here, we run SIFT
matching and label all matches as inlier or outlier according to the

ground truth. we count the supporting score for each match in a
small region.
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Algorithm: Grid Framework
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e Grid Framework

* Both images are segmented by a pre-defined grid.

* Calculating the Motion Statistics for cell-pairs instead of each
feature correspondence.
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Algorithm: Motion Kernels
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e Basic Motion Kernel

b* | b? | b?
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Algorithm: Motion Kernels

e Generalized Motion Kernels (Extension™)

* Rotation
al|a?| a3 bl | b2 | b3 b* | bt | b2
a*| a | a® b4 | b | b® b’ | b | b?
a’ | a8 | a° b? | b8 | b° b8 | b° | b°
Fixed (1) (2)
b7 | b | bt b2 | b3 | be
be| b | b2 bt| b | b°
b | bb | b3 b4 | b7 | b®
(3) (8)
* Scale

* Varying the cell size of the second image by a scale factor.
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Algorithm: Empirical parameters

=10
[E

* How many grid-cells should be used?
* Too fine: weak statistics and low efficiency.
* Too coarse: low accuracy
* The empirical results show 20 x 20 is a good choice.

e How to set the threshold?

T = my + as; TR Qs & ayn

T, itSi; > 7 =ayn;
F, otherwise

cell-pair {i, j} € {
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Algorithm: GMS

e Grid Motion Statistics Algorithm

Algorithm 1 Grid Motion Statistics

Input: X, s, r {Correspondences, scale, rotation}
Output: Inliers
(1, G4 = GenerateGrids(s)
K = GenerateMorionK ernel(r)
fori = 1to |G| do
j=1:
for k = 1to |G| do
if |.;t;,k| > |Xij| then
J=K
end if
end for
Sij.7i = ComputeGM S(K') {Eq. (13)(14)}
if Sij > 7; then
Inliers = Inliers U &jj;
end if
end for
Repeat algorithm with gird patterns shifted by half cell-
width in the x, ¥ and both 2 and y directions.
return Inliers
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Algorithm: Full Feature Matching
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* Full feature matching pipeline

Algorithm 2 Feature Matching with GMS

Input: [, I, Scale, Rotation {Two input images}
Output: Inliers
Extract Features and Descriptions: F,, D,, Iy, Dy
Find Nearest Neighbour Matches: X
Initialise Inliers and number
number = 0
for all s € Scale do
for all € Rotation do
inlier = gms(X, s, 1)
if |inlier| > number then

number = |inlier|
Inliers = inlier
end if
end for
end for

return Inliers
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Algorithm: Run time %

* Run time on Image pairs
* ORB feature extraction(about 35ms on cpu)
* Nearest Neighbor Matching(106ms on cpu, 25ms on gpu)
* GMS(1ms on cpu)
e Overall : 1000/ (2 * 35+ 25 + 1) = 10.42fps

e Real time on Video data

* ORB and NN can run parallelly on video sequence.
e Overall : 1000 / 35 = 28.57fps
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* Dataset
Dataset TUM Strecha VGG Cabinet
Full name RGB-D SLAM Dataset Dense Multiview Affine Covariant A subset of
and Benchmark Stereo Dataset Regions Datasets TUM dataset
Image pairs 3141 500 40 578
Ground truth Camera pose, Depth Camera pose, 3D model Homography Camera pose, Depth
Description Including all image Well-textured images Viewpoint change, | Low-texture images

condition changes

Zoom+rotation,blur

with strong light

e Capture of TUM dataset
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Evaluation =

e Capture of Strecha dataset

e Capture of VGG dataset
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* Matching ability

Recall = === Precision s Fomeasure

1

08r 0er

06 06

04r o4

0zr

5 10 15 20 25 L

TUM

02f [Red :GMS o=
Blue : Ratio Test

Cabinet VGG
X: Image Rotation Degree & Image Pair Order [VGG]
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* Pose Estimation

Rotation Success Ratio Translation Success Ratio
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Evaluation =

* Wide-baseline matching

SIFT GMS

(b) Wide baseline matching on 3D scenes

In both graphs, the first row shows initial results and the second row
illustrates the matches after RANSAC.
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* GMS on Images with Repetitive Structures

Images are selected by [1], where many state—of—art matchers fail and SIFT
fails all.

1 [1] Epipolar Geometry Estimation for Urban Scenes with Repetitive Structures, IEEE TPAMI, 2014, Kushnir et. al. ‘
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Evaluation

* \Video Demo(screen shot)
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Share

* JiaWang’s Home Page
 http://jwbian.net/
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* Project Page
e http://jwbian.net/gms/

e Code on GitHub:
* https://github.com/JiawangBian/GMS-Feature-Matcher

e VVideos on YouTube:
* https://voutu.be/3SIBgspLbxl

* Links to CODE and RepMatch

e http://www.kind-of-works.com/
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